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Background: Long-term video-EEG monitoring (LTM) in dedicated epilepsy units increases the chances of capturing epileptic seizures. It is thus essential 
for diagnosing epilepsy, seizure classification, and patient selection for epilepsy surgery. LTM recordings generate vast data that require EEG experts to 
assess visually, which is time-consuming and expensive. Several automatic seizure detection systems based on scalp EEG are available. One such system 
is the ENCEVIS. Our study approaches how the ENCEVIS software could be used in an EMU setting. We covered a wide range of epilepsy syndromes, 
providing excellent insight into the sensitivity of ENCEVIS across various forms of epilepsy commonly seen in clinical practice. 
Objectives: To assess seizure characteristics that influence the ENCEVIS's performance, we compared its performance to conventional EEG review by 
clinical physiologists according to seizure onset localization, duration, electrographic changes, and semiology. 
Methods: We prospectively included 266 anonymous video-EEG recordings (>4h) from 263 individuals ages 4-67 in the study. The final database 
contained 112 seizures lasting more than 5 seconds from 43 ictal recordings. Recordings with non-epileptic paroxysmal events were excluded. 
Two independent EEG experts visually analyzed and assessed ENCEVIS. They defined true positive, false negative, and false positive seizure detections. 
Results: Seizure duration (<10 sec 6.3%, >60 sec. 63.9% (p<0.05) influenced ENCEVIS sensitivity. 
GTCS and FB-TCS were detected with 100% sensitivity. Focal seizures with impaired awareness also were detected as statistically reliable at 69.5% 
(P<005).  Sensitivities for focal aware seizure and generalized tonic seizures were 26.7% and 23.1%, respectively. 
Conclusions: ENCEVIS software does not perform as well in real-life scenarios as clinical physiologists do. The algorithm is most sensitive to longer-
duration focal seizures with impaired awareness, GTCS, and FB-TCS seizures. Sensitivity is the lowest for shorter generalized tonic and focal aware 
seizures. This assessment may give future users helpful insight into this software's strengths and weaknesses and help further improve the algorithm. 
Keywords: Automatic seizure detection; epilepsy; long-term video EEG monitoring; seizure.

BACKGROUND 
eizure recording using video-EEG is essential for 
diagnosing epilepsy, differentiating epilepsy from 
other conditions, classifying seizures, and selecting 
patients for epilepsy surgery.1,2 Long-term video-EEG 
monitoring (LTM) in dedicated epilepsy units 

increases the chances of capturing epileptic seizures and 
accompanying EEG epileptiform activity.3 LTM recordings 
generate vast data that require EEG experts to assess visually. 
This process is both time-consuming and expensive.  

Several studies have demonstrated that algorithms for 
automatic seizure detection (ASD) and automatic detection of 
interictal epileptiform patterns have high sensitivity and 
specificity; however, those studies contain only a small 
number of patients or cannot be replicated.4-6 

Several automatic seizure detection systems based on 
scalp EEG are available. One such system is the ENCEVIS 
system, developed by the Austrian Institute of Technology 
(AIT).7 Promising results were obtained from studies 
conducted in the EMU. According to a study by Johannes Koren 
et al., commercially available seizure-detection software 
packages showed similar and reasonable sensitivities when 
using the same data set. In this study, ENCEVIS 1.7 
demonstrated slightly lower sensitivity but the highest 
specificity.8,9,13   

To assess seizure characteristics that influence the 
performance of the ENCEVIS 1.7, we compared its 
performance to conventional EEG review by clinical 
physiologists according to seizure onset localization, duration, 
electrographic changes, and semiology. 

METHODS 
We prospectively included 266 anonymous video-EEG 
recordings (>4h) from 263 individuals, ages 4-67 years, from 
2018 to 2022 recorded at S. Khechinashvili University Hospital. 
In the final analysis, we included 43 recordings containing at 
least one epileptic seizure. Recordings of patients with non-
epileptic paroxysmal events were not included. Additionally, 
only electroclinical seizures lasting more than 5 seconds were 
considered for the final analysis. 

The EEG was recorded using the Micromed EEG system 
(System PLUS Evolution 1.04.215, Micromed S.p.A., Veneto, 
Italy). Polygraphic electrodes were also utilized, including EOG, 
chin EMG, and ECG. It is important to note that the seizure 
detection system ENCEVIS was actively running online 
alongside the video-EEG monitoring (VEM) process. 

We studied the commercially available ENCEVIS 1.7 
software package. ENCEVIS employs a multimodal approach to 
seizure detection using EEG features with ECG.7-10 We used 
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only the software's seizure detection features, ignoring other 
tools such as detecting different interictal patterns, EEG 
amplitude, etc. ENCEVIS 1.7. was running online with video-
EEG monitoring.  

The recordings were copied into two separate databases 
without any processing. Later, two independent EEG experts 
performed a visual analysis and assessment of ENCEVIS. The 
experts who analyzed the EEG data did not have access to 
ENCEVIS annotations. On the other hand, the experts who 
assessed the detection results of the seizure-detection 
software were blind to the video-EEG reports of visual analysis. 
All experts involved in the study had over ten years of 
experience in epileptology and were certified as clinical 
neurophysiologists by the Ministry of Health in Georgia. 

EEG experts identified the onset of seizures by using the 
first detectable electrographic change during clinical seizures. 
They defined actual seizure detection as repetitive 
epileptiform EEG discharges of >2 Hz or a characteristic pattern 
showing a quasi-rhythmic spatiotemporal evolution  (i.e., a 
gradual change in frequency, amplitude, morphology, or 
location).11 The experts determined markers for seizure onset 
and termination, extracted for each seizure in all patients. 
These markers were accepted as the reference standard, and 
annotations made by ENCEVIS 1.7 were compared to them. 
The durations of all ictal EEG patterns were identified. We 
regarded recording in which any seizure was detected as 
positive for epilepsy, regardless of whether all seizures in that 
record had been identified. 

During the evaluation of ENCEVIS performance, a seizure 
detection was considered true positive (TP) when ENCEVIS 
detected it within 30 seconds before the seizure onset and 60 
seconds after the seizure termination. False negatives (FN) - 
when the experts detected seizures, but ENCEVIS missed them. 
False positives (FPs) occur when ENCEVIS incorrectly annotates 
EEG as seizures. The sensitivity is calculated as the TP/(TP+FN) 
ratio.14 Moreover, the specificity was measured as the number 
of false positives per hour (FP/h). 

We distinguished between seizures lasting less than 10 
seconds and those lasting 10-60 seconds or longer than 60 
seconds. We also studied algorithm performance according to 
seizure type, and seizure classification was determined using 
the latest ILAE classification.12 Finally, we estimated the false 
positive rate per hour. 

The statistical analysis involved using the standard SPSS 27 
software to calculate the mean values and standard deviations 
(mean ± SD) of the variables for the patients in the study group. 
The tests were performed with a 95% confidence interval. 

One-way Analysis of Variance (ANOVA) was employed to 
evaluate the differences in the distribution of parametric 
indicators based on various criteria.  

Furthermore, analysis of covariance was utilized to 
evaluate changes in seizure detection rates according to 
seizure duration; values were considered reliable if the 
statistical confidence coefficient p was less than 0.05 with a 
95% confidence interval.. 

RESULTS 
Two hundred sixty-six video EEGs longer than four hours were 
selected. The mean duration was 11.06 hours (4 to 48 hours), 
resulting in 2690 hours of analyzed data. Fifty-four recordings 
contained clinical events, 11 recordings were excluded (10 
recordings with non-epileptic paroxysmal events and one with 
both epileptic and non-epileptic paroxysmal events) 43 
recordings contained at least one electroclinical seizure 
identified by reference standards and were included in the 
study. These 43 recordings accounted for 112 visually 
documented seizures. The median seizure count was 2.6 per 
recording (range 1-17). Out of these, 76 seizures had a focal 
onset (average 2.3 per recording), and 36 had a generalized 
onset (average 3.4 per recording). 

In the study population, the distribution of epilepsy based 
on seizure onset was as follows: 30 patients (69.7%) had Focal 
epilepsy, out of which 12 (27.9%) had frontal lobe epilepsy 
(FLE), 14 (32.55%) had temporal lobe epilepsy (TLE), and 4 
(9.3%) had parietal/occipital lobe epilepsy (P/OLE). 
Additionally, 13 patients (30.25%) had Generalized epilepsy 
syndromes. 

ENCEVIS accurate positive seizure detections per recording 
varied from 0% to 100%, with a mean of 71.2%. For focal 
epileptic seizures, the average sensitivity was 75.1% (frontal 
lobe onset – 73.8%, temporal lobe onset - 76.2%, and 
occipital/parietal lobe onset - 75%). The mean sensitivity in the 
generalized seizure onset subgroup was 62%.  

ENCEVIS had a mean false positive (FP) detection rate of 6.3 
per recording. The mean false negative (FN) detection rate was 
1.4 per recording. The rate of false positive detections per hour 
varied from 0/hour to 2.2/hour, with a mean of 0.35/hour 
(0.35±0.50). Most false positives were non-seizure-related 
tachycardia, muscle artifacts, movement artifacts, or interictal 
activity. 

Of the 43 recordings containing seizures, ENCEVIS 
recognized at least one seizure in 34 or 79.1% of the recordings 
containing seizures. Moreover, ENCEVIS did not make any FP 
or FN annotations in one of the recordings. 

ENCEVIS performance per seizure 
Reference standard visual analysis identified 112 
electroclinical seizures. Out of the 112 visually detected 
seizures, ENCEVIS correctly marked 58 of them, resulting in a 
true positive (TP) detection rate of 51.8%. 

Localization of the epileptogenic zone is indeed a crucial 
aspect of epilepsy diagnosis. In our analysis, we compared 
ENCEVIS detection sensitivity based on the localization of 
seizure onset (Tab.1). The sensitivity for seizures with frontal 
lobe onset was 53.5%. The sensitivity for seizures with 
parietal/occipital lobe onset was 75%, although this result is 
based on a small sample size of only four seizures, making it 
less reliable and insignificant. For seizures with temporal lobe 
onset, the sensitivity was 69%. The comparison of the true 
positive (TP) and false negative (FN) rates demonstrated that 
seizures of temporal lobe onset were statistically reliable with 
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a p-value of less than 0.05 (p<0.05). That suggests ENCEVIS 
demonstrated more consistent and accurate performance in 
detecting temporal lobe seizures than seizures from 
extratemporal localization. 

TABLE 1. Influence of seizure onset zone on the ENCEVIS per seizure sensitivity 

Seizure onset Total 
ENCEVIS 

true positive 
ENCEVIS 

false negative 

Total 
n 112 58 54 

% 100 51.8±50.2 48.2±50.2 

Frontal lobe  
n 43 23 20 

% 38.39 53.5±50.4 46.5±50.2 

Parietal/occipital lobe  
n 4 3 1 

% 3.57 75±46.3 25±46.3 

Temporal lobe  
n 29 20 9 

% 25.89 69±47.1 31±47.1 

Generalised  
n 36 12 24 

% 32.15 33.3±47.81 66.7±47.81 

 
Our study revealed a positive correlation between ENCEVIS 

sensitivity and seizure duration. The total number of seizures 
analyzed was 112. For short seizures lasting below 10 seconds, 
the sensitivity was lowest at 6.3%; for seizures ranging from 10 
to 60 seconds, the sensitivity was 55.7%; seizures longer than 
60 seconds had the highest sensitivity at 63.9% (p<0.05). Thus, 
detection performance by ENCEVIS positively correlates with 
seizure duration (Tab.2).  

TABLE 2. Influence of seizure duration on the ENCEVIS per seizure 

Seizure duration 
ENCEVIS 

true  
positive 

ENCEVIS 
false 

negative 

Number of ictal 
events 

n 112 58 54 

% 100 51.8±50.2 48.2±50.2 

The duration of 
seizure in 
seconds 

Mean 58.2±33.9 44.1±56.6 58.2±33.9 

Median 52.5 16 52.5 

Min 10 8 10 

Max 168 270 168 

The onset of 
≤10sec duration 
seizures 

n 1 12 1 

% 6.3±25.0 93.7±25.0 6.3±25.0 

The onset of 
11-60sec 
duration 
seizures 

n 34 27 34 

% 55.7±50.1 44.3±50.1 55.7±50.1 

The onset of 
>60sec duration 
seizures 

n 23 12 23 

% 63.9±48.7 36.1±48.7 63.9±48.7 

Correlation with 
seizure duration 

Pearson’s coefficient 0.152 -0.152 

 

Seizure type influenced algorithm detection, statistically 
reliable detection was found for GTCS and FB-TCS 100% 
(P<0.05) and focal seizures with impaired awareness mean 
duration 67.07±52.34 sec 65.5% (P<0.05) (Tab.3). Seizure 
detection was low for subtle tonic seizures, with a mean 
duration of 11.81±3.3 sec., 23.1% mostly recorded from 
patients with learning disabilities. Missed tonic seizures had 
somewhat shorter duration <10 seconds, and on the EEG, ictal 
rhythmic patterns were not observed.  

TABLE 3. Influence of seizure type on the ENCEVIS per seizure sensitivity 

Seizure type Total 
ENCEVIS 

true positive 
ENCEVIS 

false negative 

GTCS+FB-TCS 
N 12 12 0 

% 100 100 0 

Focal impaired 
awareness 

N 55 36 19 

% 100 65.5±48 34.5±48 

Focal aware 
N 15 4 11 

% 100 26.7±45.8 73.3±45.8 

Generalized tonic 
N 26 6 20 

% 100 23.1±43 76.9±43 

Absence 
N 4 0 4 

% 100% 0 100 

Abbreviations: FB-TCS, focal bilateral tonic-clonic seizures; GTCS, generalized 
tonic-clonic seizures  

DISCUSSION 
In our study, we approach how the software would be used in 
an EMU setting by comparing the performance of the clinical 
physiologists with that of the software. We addressed various 
epilepsy syndromes, offering valuable insight into the 
effectiveness of ENCEVIS across common forms of epilepsy in 
clinical practice. 

The ENCEVIS had an average sensitivity of 71.2% per 
recording, with the highest sensitivity observed for temporal 
lobe onset seizures (76.2%). However, the recordings from 
patients with generalized epilepsy had significantly lower 
sensitivity (62%). These findings are consistent with previously 
published data.8,10 

Furthermore, our database contained different seizure 
types; GTCS and FB-TCS were detected with 100% sensitivity. 
Focal seizures with impaired awareness also were detected as 
statistically reliable at 69.5% (P<005).  Sensitivities for focal 
aware seizure and generalized tonic seizures were lower, 26.7 
and 23.1, respectively. This was because they usually have no 
or short EEG correlates. The present study and previous 
reports suggest that detection software does not perform as 
well as clinical physiologists.7-9  

The results demonstrated that false positives occur at a 
rate of 0.35 per hour, consistent with previous studies.7-10 The 
background EEG activity may influence ENCEVIS's detection of 
false positives. Therefore, additional studies are needed to 
identify factors affecting the FP detection rate. 

In this study, we also examined the potential of ENCEVIS as 
a screening tool. Our findings show that ENCEVIS correctly 
identified at least one seizure in 79.1% of recordings that 
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contained seizures. This is a significant result because it 
suggests that ENCEVIS 1.7 can assist neurophysiologists in 
identifying recordings of epileptic seizures from a large 
dataset, thus reducing their workload. However, experts must 
always check and verify the algorithms' detections. 

Our study has some limitations. It is a single-center study, 
and results may differ in other settings. We only focused on 
seizure detection. Furthermore, the online usability of these 
detection software packages should be investigated, as they 
might be beneficial for patient safety and ictal testing. 

CONCLUSIONS 
Although the performance of ENCEVIS software is less reliable 
than that of clinical physiologists, it can be used in an EMU 
setting if the user is aware of its limitations. 

The algorithm is most sensitive to focal seizures with 
impaired awareness and GTCS and FB-TCS seizures and least 
sensitive to generalized tonic focal aware seizures.  

ENCEVIS can detect at least one seizure in the ictal EEG 
recordings with a sensitivity of 79.1%, making it a valuable tool 
for automated screening and identification of such recordings. 
This has the potential to save time and reduce the workload of 
neurophysiologists. 

This assessment may give future users helpful insight into 
this software's strengths and weaknesses and help further 
improve the algorithm.  
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